What (modal) logics say to metaphysics A logical endeavor toward a dimensional space of multi-verses.

Shimpei Endo

Institute for Logic, Language and Computation, University of Amsterdam endoshimpeiendo@gmail.com

Introduction¹

Without semantics, logic ² becomes just a stream of meaningless symbols derived via tasteless rules. A formal semantics assigns what such expressions mean – or what mathematical structure they correspond to. However, since a semantics is a mere mathematical structure, the quest keeps going: *how* or *what makes* such a mathematical structure give(s) a meaning to a sentence (or any syntactically accepted expression)?

Metaphysicians have intended ³ to provide a *metaphysical* account or description of formal semantics. To have a nice metaphysical theory, we check its formalized structure–formal semantics for well-known logics are to be examined.

Definition 8 (Truth-condition). $M, w \vDash \phi \text{ iff } w \in \llbracket \phi \rrbracket_M$.

1 Semantics available in the current modal market

Why do we need another formal semantics? We already have several options [2]. Each enjoys its own good points (see the table below). Nevertheless, none of them meets our needs. To begin with, relational semantics of Kripke leaves a metaphysical mystery: what is the very thing called relation in Kripke structure, metaphysically speaking? Topological semantics makes more metaphysical sense for the structure of inter-worlds space, but *too coarse* for its S4 completeness, indicating its incapability to distinguish logics weaker than S4.

Semantics	Advantages	Disadvantages
Relational [3, 1]	User-friendly	Metaphysically mysterious, classical and standard
Algebraic [?]	Importing algebraic technique	Syntax in disguise.
Topological [5]	Metaphysically making sense	Too coarse (S4-complete)
Neighborhood [4]	Fine-grained	Still mysterious

Our new semantics – named *spatial semantics* should be:

• metaphysically making more sense and

• *fine-grained* enough to distinguish non-classical and non-standard logics.

2 Semantics

Definition 1 (Language of PML). Let PROP be a set of propositional letters $p_0, p_1, ...$ (at most countable). A sentence ϕ of propositional modal logic (PML) is defined in a standard inductive manner:

Metaphysical interpretation of spatial semantics

Read this semantics as Takashi Yagisawa's *dimensional modal realism*, featuring:

- modal indices as a (certain but not privileged) kind of metaphysical indices such as spatial and temporal indices
- \bullet worlds as slices of indices (and metaphysically fundamental difference between worlds W and locus L),
- impossible worlds (w s.t. $w \models p \land \neg p$) in addition to possible worlds.

3 Demonstration: make classical logic from nothing!

We can control the strength of logic by putting *spatial* constrains over our spatial models. **Claim 1** (Empty model). $\emptyset \not\models \phi$ for any sentence ϕ .

Proof. Because $\emptyset \notin \emptyset$.

Claim 2 (Failure of explosion). *Given* ϕ *a sentence of propositional modal logic and* M^m *is not empty,* $M^m \not\models \bot \rightarrow \phi$.

Proof. For instance, consider a squeezed model $\Downarrow_2 M$ in the previous example. $\Downarrow_2 M \neq \llbracket \bot \rightarrow \phi \rrbracket$ since $\Downarrow_1 \Downarrow_2 \llbracket \bot \rrbracket = \Downarrow_1 \Downarrow_2 \llbracket \rrbracket = \Downarrow_1 \Downarrow_2 M$. So its complement of singleton is \emptyset . $\Uparrow_1 \emptyset = \emptyset$. So $\llbracket \bot \rightarrow \phi \rrbracket$ is calculated in effect as $\Uparrow_1 \Downarrow_1 \llbracket \phi \rrbracket$, which does *not* have to equal to the entire $\Downarrow_2 M$.

 $\phi ::= p_i |\neg \phi| \phi \land \phi | \phi \lor \phi | \phi \to \phi | \Box \phi | \Diamond \phi$

Definition 2 (Structure of spatial semantics: locus). Let I is an index set of at most countable. The structure of spatial semantics is called the locus: $L = \prod_{i \in I} \langle D_i, \tau_i \rangle$, while each $\langle D_i, \tau_{i \in I} \rangle$ forms a topology. A world $w \in L$ forms a set of worlds $W = \{w_i | w \in L\}$.

Definition 3 (Model of spatial semantics). A model of spatial semantics M is the form of $\langle L, V \rangle$ with L a locus defined just above and a function valuation as follows. $V : PROP \mapsto \mathcal{P}L$; with $p \in PROP$, $V(p) \subseteq L$.

Key operation: squeezing

This central operation to define \Box and \Diamond is *squeezing*, which generates new models from a given model via its *projection*, a well-known operation on product sets (or topologies). This operation forces the model to go *one step down, in a dimensional sense* in the following manner.

Definition 4 (Projection). Let I, J be index sets. Write X_I for $X_I = \prod_{i \in I} X_i$. A projection on X_I with $J \subset I$ is a function $\pi_J : X_I \mapsto X_J$, $x_{i \in I} \mapsto x_{j \in J}$. Write $\overrightarrow{x} = (x_1, x_2, ..., x_i, ...)$, with $x_i \in X_i$. Our operation squeezing is based on a very simple type of projection: just eliminating one axis out of a given coordinate.

Definition 5 (Squeezing and unsqueezing). Given $i \in I$ and $\overrightarrow{x} = (x_1, x_2, ..., x_{i-1}x_i, x_{i+1}...)$, squeezing is a function \Downarrow_i which gives $\Downarrow_i \overrightarrow{x} = \overrightarrow{x} = (x_1, x_2, ..., x_{i-1}, x_{i+1}...)$ For a subset X of L, write $\Downarrow_i X = \{\Downarrow_i \overrightarrow{x} \overrightarrow{x} \in X\}$. Unsqueezing is defined as its inverse. Write $\Downarrow_i^{-1} := \Uparrow_i$.

Let us observe examples to see how squeezing and unsqueezing work. $M, w_a \vDash p$ because $w_a \in \llbracket p \rrbracket$. Where does it make $\neg p$ true? It does *not* have to be the compliment of $\llbracket p \rrbracket$ in fact $w_b \not\in \llbracket p \rrbracket$ but $w_b \not\models \neg p$ since $w_b \notin \llbracket \neg p \rrbracket$. $M, w_c \vDash \neg p$ because $w_c \in \llbracket \neg p \rrbracket$.

To see modality, observe w_d (in a different picture but the same model M). $M, w_a \models \Box p$ since it has a direction to squeeze (namely \Downarrow_1) which makes $w_a \in \Uparrow ((\Downarrow [p])^c)$. In contrast, $M, w_d \not\models \Box p$ since in any direction $i \in I = \{1, 2\}$ to squeeze $\Downarrow_i w_d \notin (\Downarrow_i ([p])^c)^c)$

There are two types of models in my framework: squeezed and original. This distinction will play a crucial role to distinguish between minimal and intuitionistic logic (under singleton conditions). **Definition 6** (Squeezed and original). *If a model is made by squeezing, it is a squeezed model. Otherwise, it is called the original model.*

Claim 3 (Recovery of explosion). If we consider any non-empty model M^i which is original, $M^i \vDash \bot \rightarrow \phi$ for a sentence ϕ .

Proof. Observe that $\llbracket \bot \rrbracket = emptyset$ in any original model M^i . So is any squeezed model (except for empty one) $\Downarrow_j M^i, \Downarrow_j \llbracket \bot \rrbracket = \emptyset$, implying that $(\Downarrow_j \llbracket \bot \rrbracket)^c = \Downarrow_j M$. This leads that $\Uparrow_j (\Downarrow_j \llbracket \bot \rrbracket)^c = M$. Therefore, no matter what $\Uparrow_j \Downarrow_j \llbracket \phi \rrbracket$ takes, $\llbracket \bot \to \phi \rrbracket = M^i$.

Logic	Characteristic axiom	Condition
Nihil	Nothing provable	No condition at all (empty world accepted!)
Minimal		Dimensions $I \ge 0$
Intuitionisti	c Explosion $\bot \to \phi$	Non-squeezed
Classical	Bivalence $P \lor \neg P$	Right-angled: There is <i>i</i> s.t. $\uparrow_i \Downarrow_i [\![P]\!] = [\![P]\!]$
K	(Dual. $\Box P \neg \Diamond \neg P$)	By definition.
K	(Nec. $\vDash \phi$ implies $\vDash \Box \phi$)	Worlds are dense in locus: $L = W$.
Κ	(Dist. $\Box(P \land Q) \rightarrow (\Box P \land \Box Q)$)	?
Т	$\Box P \to P$	Number of dimensions should be 0 or 1.
4	$\Box P \to \Box \Box P$	Number of dimensions?

Forthcoming Research

• Heuristic methods for finding spatial conditions (like Sahlqvist theorem [1] for relational structure)

• Importing *locale* (*pointless topology*) to enhance fine-grainedness and to rescue our metaphysical intuition: our world in which we live cannot be a *point*.

Truth conditions

Definition 7 (Truth-making area). Consider a spatial model $M = \langle L, V \rangle$. The truth-making area of a sentence ϕ is defined in the following inductive manner.

$\bullet [\![p]\!]_M = V(p)$	$(\llbracket \psi \rrbracket_M^c))^c)$
• $\llbracket \bot \rrbracket_M = \llbracket \phi \rrbracket_M \cap \llbracket \neg \phi \rrbracket_M t$ • $\llbracket \phi \land \imath / \imath \rrbracket_M = \llbracket \phi \rrbracket_M \cap \llbracket \imath / \imath \rrbracket_M$	$\bullet \llbracket \neg \phi \rrbracket_M = \cup_{i \in I} \Uparrow_i ((\Downarrow_i \llbracket \phi \rrbracket)^c)$
• $\llbracket \phi \lor \psi \rrbracket_M = \llbracket \phi \rrbracket_M \sqcup \llbracket \psi \rrbracket_M$ • $\llbracket \phi \lor \psi \rrbracket_M = \llbracket \phi \rrbracket_M \cup \llbracket \psi \rrbracket_M$	• $\llbracket \Box \phi \rrbracket_M = \bigcup_{i \in I} \Uparrow_i \left((\Downarrow_i (\llbracket \phi \rrbracket_M^c))^c \right)$
• $\llbracket \phi \to \psi \rrbracket_M = \bigcup_{i \in I} \Uparrow_i^{(} (\Downarrow_i \llbracket \phi \rrbracket_M)^c \cup (\Downarrow_i$	$\bullet \llbracket \Diamond \phi \rrbracket_M = \cap_{i \in I} \Uparrow_i (\Downarrow_i \llbracket \phi \rrbracket_M)$

References

- [1] Patrick Blackburn, Maarten de Rijke, and Yde Venema. *Modal Logic*. Cambridge University Press, 2002.
- [2] Patrick Blackburn and Johan van Benthem. Modal logic: a semantic perspective. In Patrick Blackburn, editor, *Handbook of Modal Logic*, pages 1–84. Elsevier B.V., 2007.
- [3] Saul A. Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fennica, 16:83– 94, 1963.
- [4] Eric Pacuit. *Neighborhood Semantics for Modal Logic*. Short Textbooks in Logic. Springer International Publishing, 2017.
- [5] Johan van Benthem and G Bezhanishvili. Modal Logics of Space. In Marco Aiello, Ian Pratt-Hartmann, and Johan van Benthem, editors, *Handbook of Spatial Logics*, chapter 5, pages 217 298. Springer, Dordrecht, The Netherlands, 2007.

¹A poster presented at the annual meeting of Japan Association for Philosophy of Science (JAPS), Chiba University, 17 June, 2018. The latest version is available on: https://www.overleaf.com/read/rxskqrbkwdqm ²syntactically defined as a set of axioms and inference rules and written in formal expression ³Discussed in the talk given in my talk given June 16, 2018. ⁴Metaphysically, $w \subseteq L$ should be better but for the sake of formal simplicity, let it be \in for the time being.